Determination of Molar Mass of a Volatile Liquid

Data Tables

Quantity	Symbol	Value	Units
Mass of empty flask	m_{f}		
Air temperature	$T_{\mathrm{a} 0}$		
Mass of water-filled flask	m_{fw}		

Run 1

Liquid: \qquad

Quantity	Symbol	Value	Units
Water bath temperature	$T_{\mathrm{b} 1}$		${ }^{\circ} \mathrm{C}$
			K
Room temperature	$T_{\mathrm{a} 1}$		${ }^{\circ} \mathrm{C}$
			K
Barometric pressure	$P_{\text {tot1 }}$		hPa
		atm	
Mass after cooling	m_{1}		g

Run 2

Liquid: \qquad

Quantity	Symbol	Value	Units
Water bath temperature	$T_{\mathrm{b} 2}$		${ }^{\circ} \mathrm{C}$
			K
Room temperature	$T_{\mathrm{a} 2}$		${ }^{\circ} \mathrm{C}$
			K
Barometric pressure	$P_{\mathrm{tot} 2}$		hPa
		atm	
Mass after cooling	m_{2}		g

Run 3

Liquid: \qquad

Quantity	Symbol	Value	Units
Water bath temperature	$T_{\mathrm{b} 3}$		${ }^{\circ} \mathrm{C}$
			K
Room temperature	$T_{\mathrm{a} 3}$		${ }^{\circ} \mathrm{C}$
			K
Barometric pressure	$P_{\text {tot } 3}$		hPa
		atm	
Mass after cooling	m_{3}		g

Run 4

Liquid: \qquad

Quantity	Symbol	Value	Units
Water bath temperature	$T_{\mathrm{b} 4}$		${ }^{\circ} \mathrm{C}$
			K
Room temperature	$T_{\mathrm{a} 4}$		${ }^{\circ} \mathrm{C}$
			K
Barometric pressure	$P_{\text {tot } 4}$		hPa
		atm	
Mass after cooling	m_{4}		g

Calculation Tables

$M_{\mathrm{air}}=0.78(28.014 \mathrm{~g})+0.21(31.998 \mathrm{~g})+0.01(39.948 \mathrm{~g})=28.97 \mathrm{~g} / \mathrm{mol}$
$\rho_{\mathrm{w}}=1000 . \mathrm{g} / \mathrm{L}$

Quantity	Symbol	Formula	Value with units
Mass of water filling flask	m_{w}	$m_{\mathrm{fw}}-m_{\mathrm{f}}$	
Volume inside flask	V	$m_{\mathrm{w}} / \rho_{\mathrm{w}}$	

Run 1

Quantity	Symbol	Formula	Value with units
Mass of liquid and vapor after flask cools	$m_{\text {vap1 }}$	$m_{1}-m_{\mathrm{f}}$	
moles of sample	n_{1}	$P_{\text {tot } 1} V /\left(R T_{\mathrm{b} 1}\right)$	
Molar mass of liquid	M_{1}	$m_{\text {vap1 }} / n_{1}$	

Run 2

Quantity	Symbol	Formula	Value with units
Mass of liquid and vapor after flask cools	$m_{\text {vap2 }}$	$m_{2}-m_{\mathrm{f}}$	
moles of sample	n_{2}	$P_{\text {tot2 } 2} V /\left(R T_{\mathrm{b} 2}\right)$	
Molar mass of liquid	M_{2}	$m_{\text {vap2 }} / n_{2}$	

Run 3

Quantity	Symbol	Formula	Value with units
Mass of liquid and vapor after flask cools	$m_{\text {vap3 }}$	$m_{3}-m_{\mathrm{f}}$	
moles of sample	n_{3}	$P_{\text {tot } 3} V /\left(R T_{\mathrm{b} 3}\right)$	
Molar mass of liquid	M_{3}	$m_{\text {vap3 } 3} / n_{3}$	

Run 4

Quantity	Symbol	Formula	Value with units
Mass of liquid and vapor after flask cools	$m_{\text {vap4 }}$	$m_{4}-m_{\mathrm{f}}$	
moles of sample	n_{4}	$P_{\text {tot4 }} V /\left(R T_{\text {b4 }}\right)$	
Molar mass of liquid	M_{4}	$m_{\text {vap4 }} / n_{4}$	

