
Physics Quiz 1

- 2.0 moles of a monatomic ideal gas initially are at state A, with a pressure of P₁ = 3.0 ×10⁵ Pa and volume of V₁ = 6.0 × 10⁻² m³. The gas can be taken directly to state B by the constant-temperature path A—B depicted, or stepwise through state C, by path A—C followed by path C—B.
 - a. The path A-B is carried out at constant temperature. The word for a constant temperature process is <u>isothermal</u>
 - b. The path **A**—**C** is carried out at constant volume. The word for that is <u>isochoric</u>

- c. The path **C**-**B** is carried out at constant pressure. The word for that is <u>isobaric</u>
- d. What is the temperature of the gas at state **A**? Ideal gas PV = nRT, so $T = PV/(nR) = \frac{(3 \times 10^5 \text{ J/m}^3)(6 \times 10^{-2} \text{ m}^3)}{(2 \text{ mol})(8.314 \text{ J/(mol K)})} = 1082.5 \text{ K}$ This seemed high to me, so I made the online version 4 mol gas, making the temperature half as much, or 541.3 K.
- e. What is the internal energy of the gas at state **A**?

Monatomic ideal gas $U = 3/2 \ nRT = 3/2 \ PV = 3/2(3 \times 10^5 \ \text{J/m}^3)(6 \times 10^{-2} \ \text{m}^3)$ = 27×10³ J = 27 kJ

f. The volume of the gas at state **B** is $V_2 = 9.0 \times 10^{-2}$ m³. What is the pressure P_2 at state **B**?

PV = nRT and T is unchanged, so $P_1V_1 = P_2V_2$ thus $P_2 = P_1V_1/V_2$ = $(3 \times 10^5 \text{ J/m}^3)(6 \times 10^{-2} \text{ m}^3)/(9 \times 10^{-2} \text{ m}^3) = 2 \times 10^5 \text{ J/m}^3 = 2 \times 10^5 \text{ Pa}$

g. What is the internal energy of the gas at state **B**?

```
Same temperature as state A, so same U = 27 \text{ kJ}.
```

h. What is the internal energy *change* of the gas along path **A**–**B**? Zero.

- i. What is the sign (+, -, 0) of the work done by the gas along path A—B?
 The gas expands, so it does work on the surroundings. (+)
- j. What is the work done by the gas along path **A**–**B**? Work done by an ideal gas in an isothermal step: $W = nRT \ln(V_2/V_1) = (18 \text{ kJ}) \ln(9/6) = (18 \text{ kJ})(0.4055) = 7298 \text{ J}$
- k. What is the sign (+, -, 0) of the heat absorbed by the gas along path **A**-**B**? Here, Q = W (Why?) so (+)
- 1. What is the heat absorbed by the gas along path A-B? Q = W, so Q = 7298 J.
- m. What is the sign (+, -, 0) of the work done by the gas along path **A**-**C**?
- n. What is the work done by the gas along path A-C?
 - 0
- o. What is the temperature of the gas at state C?

PV = nRT and here V is constant so $V = V_1 = nRT_A/P_1 = nRT_C/P_2$. Then $T_C = T_A P_2/P_1 = (1082.5 \text{ K})(2/3) = 721.7 \text{ K}$. If there are 4 moles of gas, the temperature is half this, 360.9 K.

p. What is the internal energy of the gas at state **C**?

 $U = 3/2 \ nRT = 3/2 \ P_2 \ V_1 = 3/2 \ (12 \text{ kJ}) = 18 \text{ kJ}$

- q. What is the internal energy *change* of the gas along path A-C? $\Delta U = U_C - U_A = 18 \text{ kJ} - 27 \text{ kJ} = -9 \text{ kJ}$
- r. What is the sign (+, -, 0) of the heat absorbed by the gas along path **A**-**C**? Zero work, decrease in *U*, so negative *Q*. (-)

- s. What is the heat absorbed by the gas along path A-C? $\Delta U = Q - W$, so $Q = \Delta U + W = -9 \text{ kJ} + 0 = -9 \text{ kJ}$.
- t. What is the sign (+, -, 0) of the work done by the gas along path C—B?
 Expansion, so the system does work. (+)
- u. What is the work done by the gas along path **C**—**B**? For an isobaric process, $W = P \Delta V = (2 \times 10^5 \text{ J/m}^3)(3 \times 10^{-2} \text{ m}^3) = +6 \text{ kJ}$
- v. What is the change in the internal energy of the gas along path C-B?

 $\Delta U = U_{\rm B} - U_{\rm C} = 27 \text{ kJ} - 18 \text{ kJ} = +9 \text{ kJ}$

- w. What is the sign (+, -, 0) of the heat absorbed by the gas along path **C**-**B**? +
- x. What is the heat absorbed by the gas along path C-B? $\Delta U = Q - W$, so $Q = \Delta U + W = 9$ kJ + 6 kJ = 15 kJ
- 2. The First law of thermodynamics can be written $\Delta U = Q W$.
 - a. What is U in this formula? What does it mean?
 Internal energy, the total molecular kinetic and intermolecular potential energy.
 - b. What is Q in this formula? What does it mean?Heat absorbed by the system.
 - c. What is W in this formula? What does it mean?Work done by the system.