Worksheet 3: Uniform Circular Motion

Problem

Just as trajectory motion can be expressed by two one-dimensional position-time equations $x = x_0 + v_{0x}t$ and $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$, uniform circular motion can be expressed by the two one-dimensional position-time equations

$$x = r \cos(\omega t)$$

and
$$y = r \sin(\omega t).$$

- a. What is the physical meaning of r?
- b. What are the units of *r*?
- c. What is the physical meaning of ω ?
- d. What are the units of ω ?
- e. The position vector \vec{r} can be expressed as $\vec{r} = (x, y)$; likewise, the velocity vector \vec{v} can be expressed as (v_x, v_y) , where the x- and y-components v_x and v_y are $v_x = dx/dt$ and $v_y = dy/dt$.
 - (i) What is dx/dt?
 - (ii) What is *dy/dt*?
- f. What is v, the magnitude of the velocity vector \vec{v} ? This is the speed of the object. Use the Theorem of Pythagoras to find the formula and simplify.
- g. What are the units of v_x , v_y , and v?
- h. How does the direction of the vector \vec{v} compare to the direction of the vector \vec{r} ? (*Hint*: $\cos(\theta) = \sin(\theta + \pi/2), \sin(\theta) = \cos(\theta - \pi/2), -\cos(\theta) = \sin(\theta - \pi/2), \text{ and} -\sin(\theta) = \cos(\theta + \pi/2).$)
- i. The acceleration vector \vec{a} can be expressed as $\vec{a} = (a_x, a_y)$, where $a_x = dv_x/dt$ and $a_y = dv_y/dt$.
 - (i). What is dv_x/dt ?
 - (ii) What is dv_v/dt ?
- j. What is *a*, the magnitude of the acceleration vector \vec{a} ? Use the Theorem of Pythagoras to find the formula and simplify.
- k. What are the units of a, a_x , and a_y ?
- 1. Using the formula for v that you found in part f, find the formula for a in terms of v rather than ω . What is it?
- m. What is the direction of the vector \vec{a} compared to the direction of the vector \vec{v} ?
- n. What is the direction of the vector \vec{a} compared to the direction of the vector \vec{r} ?