
PHYS 1110 Worksheet: Collisions

1. Find the final velocities of the particles in the following 1-D elastic collisions.

m 1	V1i	<i>m</i> ₂	V2i	Vlf	V2f
m	+v	m	0	0	+v
m	+v	m	-v	-v	+v
m	+2v	m	$+_{\mathcal{V}}$	+v	+2v
2 <i>m</i>	+v	m	-2 <i>v</i>		
3 <i>m</i>	+v	m	<i>−v</i>		
m	+v	0	0		
0	+v	m	0		

2. Two asteroids of equal mass collide with a glancing blow. Asteroid A, which was initially traveling at 40.0 m/s, is deflected 30.0° from its original direction, while asteroid B, which was initially at rest, travels at 45.0° to the initial direction of A.

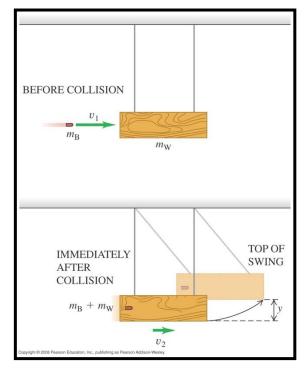
a. Find the speed of each asteroid after the collision.

Y	12
N	y

 p_{Ai}

 p_{Bi}

 $p_{\rm Af}$


 p_{Bf}

 $\sum p_i$

 $\sum p_{\rm f}$

- b. What kind of collision is this?
- c. What fraction of the original kinetic energy of asteroid A is lost during the collision?

- 3. A 12.0-g rifle bullet is fired with a speed of 380 m/s into a wood block pendulum with mass 6.00 kg, suspended from two cords 70.0 cm long. The bullet embeds in the block, and the block swings upward after impact.
 - a. What kind of collision is this?
 - b. Find the kinetic energy of the bullet and pendulum immediately after the bullet becomes embedded in the pendulum.

c. Find the vertical height through which the pendulum rises.

d. What fraction of the initial kinetic energy of the system was lost in the collision?