
PHYS 1110 Worksheet: Pendulum

1. A torsional oscillator is a body with a restoring torque that is proportional to its angular distortion (torsion) from its equilibrium position. Identify the torsional (rotational) quantities characterizing a torsional oscillator that correspond to the quantities characterizing a linear Hooke's law oscillator.

Linear Oscillator		Torsional Oscillator	
Force	F		
Displacement	x		
Spring constant	k		
Angular frequency	$\omega^2 = k/m$	Angular frequency	$\omega^2 =$

- 2. A simple pendulum is constructed of a point mass of mass m hanging by an inextensible string of length L and negligible mass. When the pendulum is displaced an angle θ from equilibrium, find
 - A. The net force on the bob (the point mass).

B. The net torque on the bob (the point mass).

- 3. Under certain conditions, a simple pendulum acts as a Hooke's law torsional oscillator.
 - A. What are those conditions?
 - B. What is the "spring constant" of the pendulum?
 - C. What is the angular frequency of the pendulum?
 - D. What is the period of the pendulum?
- 4. What is the length of a simple pendulum with a period T = 2 seconds?