
PHYS 1220 Exam 2
Brief Solutions

1. Proposed heat engines

Six heat engines are presented, the only information about them being Qh, W , and Qc.

A. First law of thermodynamics

The first law requires Qh = W +Qc.

Engine Qh, W W , W Qc, W W +Qc, W
A 1000 400 600 1000
B 1000 1000 0 1000
C 1000 600 600 1200
D 1000 500 500 1000
E 1000 450 550 1000
F 1000 650 200 850

From this table, we see that Engines C and F do not obey the first law of thermodynamics, and are
therefore impossible.

B. Second law of thermodynamics

The second law requires entropy to increase overall. In a heat engine, the entropy of the hot
reservoir decreases by an amount ∆Sh = −Qh/Th, and the entropy of the cold reservoir increases
by an amount ∆Sc = +Qc/Tc. Entropy then increases overall if

−Qh/Th+Qc/Tc ≥ 0

Qc/Tc ≥ Qh/Th

Engine Qh, W W , W Qc, W Qh/Th, W/K Qc/Tc, W/K
A 1000 400 600 10/6 2
B 1000 1000 0 10/6 0
D 1000 500 500 2 5/3
E 1000 450 550 2 55/25

Of the remaining engines, B and D do not increase entropy overall, and thus are ruled out by the
second law of thermodynamics.

C. Greatest efficiency

Efficiency of a heat engine is e = W/Qh. We can compare our remaining contenders.

Engine Qh, W W , W e
A 1000 400 0.40
E 1000 450 0.45

E is the most efficient of the possible engines.
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2. Refrigerators and heat pumps

A. Second law constraint

In refrigerators and heat pumps, entropy increases in the hot reservoir and decreases in the cold
reservoir, ∆Sh = +Qh/Th and ∆Sc = −Qc/Tc. The constraint is

+Qh/Th −Qc/Tc ≥ 0

+Qh/Th ≥ Qc/Tc

B. Heat pump COP

The benefit divided by the cost is Qh/W .

C. Refrigerator COP

The benefit divided by the cost is Qc/W .

3. Statements about static charges

a. TRUE, electric charge is conserved.

b. TRUE, positive and negative charges attract.

c. TRUE, charge is quantized, existing only in specific amounts.

d. FALSE, positive charges repel; they do not attract.

e. FALSE, neutral objects contain cancelling positive and negative charges.

f. TRUE, negative charges repel.

4. Charges on the x and y axes

A. Force magnitude

Particle A is on the x axis at 3 m ı̂ and particle B is on the y axis at 12 m ̂. Coulomb’s law reveals

F = k
q1q2
r2

= 8.987 × 109
N · m2

C2

(+700 × 10−6 C)(−200 × 10−6 C)

153 m2
= 8.22 N

B. Force direction

We don’t need to calculate anything more about Coulomb’s law; this is just a little trigonometry. The
charges of the two particles have opposite signs, so they attract. Particle B is pulled toward particle
A, and the force vector is in the same direction as the separation vector, which is −3.0 m ı̂+12.0 m ̂.
This vector is in quadrant 2; the arctangent function returns an angle in quadrant 1 or 4. The angle
we want here is

θ = 180◦ + arctan

(
12

−3

)
= 180◦ + arctan(−4) = 180◦ − 75.96◦ = 104◦

5. Statements about field lines and isopotential surfaces

a. TRUE. Feld lines and isopotential surfaces are perpendicular.
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b. TRUE. Static charges rearrange in a conductor to create zero electric field, which means constant
potential.

c. FALSE. Potential is constant on an isopotential surface.

d. FALSE. Potential is constant on an isopotential surface.

e. TRUE. “Isopotential” means equal potential.

6. Isopotential surfaces and electric field

A. Magnitude of electric field

Electric field is the negative gradient of potential. Where isopotential surfaces are close together, the
potential changes the most over a short distance. Hence, the field is greatest there. The indicated
point where the isopotential surfaces are closest together is D.

B. Field directions

Field lines point “downhill” on the potential surface.

At A, downhill is to the left and a little down.

At B, downhill is down and a little to the left.

At C, downhill is close to straight down.

At D, downhill is to the left.

7. Gauss’s law

A. Charge enclosed

The charge depends on the length of the line of charge enclosed by the surface. In this case, the
surface encloses L = 0.40 meters of the line, which bears a charge of λL = (6.40µC/m)(0.400 m) =
2.56µC.

B. Electric flux

We have two possible ways to find electric flux: by integrating a known field over the surface, or
from the charge enclosed by the surface. We don’t know the field, but we do know the charge. The
surface encloses a positive charge, so the flux through it will be positive.

Φ = Q/ε0 =
2.56 × 10−6 C · N · m2

8.854 × 10−12 C2
= 2.89 × 105 N · m2/C

C. Electric field

Here we invert the definition of flux. We know the field is the same magnitude at all points on this
cylindrical shell, and that it is perpendicular to the shell, so Φ = EA. Thus, to find the field E, we
need only to divide the flux by the area of the shell, which is 2πrL.

E = Φ/A =
2.89 × 105 N · m2/C

2π(0.100 m)(0.400 m)
= 1.15 × 106 N/C

D. Flux if the Gaussian surface’s radius were doubled

In that case, the surface would enclose the same charge, so the flux would be the same.
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The area of the cylindrical shell would double, so the electric field would be half as strong at that
distance from the line of charge. But the question asked about the enclosed charge, not about the
electric field.

8. Dipole on the x axis

These questions all concern the electric potential at points around a dipole at the origin. Potential is the
work required per charge moving to a particular location from an infinite distance away, where the potential
is defined to be zero. The electric potential at a distance r from a single isolated point charge Q is kQ/r; if
additional point charges are present, the potential is just the sum of the results from the individual source
charges. In the case of this dipole, then, there will be two terms for the potential at the different field points:
one for the positive source charge, and one for the negative source charge.

A. At field point y = 0, x = +0.20 m

Here, r1 = 0.3 m, and r2 = 0.1 m.

V = V1 + V2 =
kQ1

r1
+
kQ2

r2
= kQ

(
−1

r1
+

1

r2

)
= (8.987 × 109 N · m2/C2)

(
1.67 × 10−9 C

)( −1

0.3 m
+

3

0.3 m

)
=

(
15.00 N · m2/C

)( 2

0.3 m

)
= 100.0 V

B. At the field point y = 0, x = −0.20 m

Here, r1 = 0.1 m, and r2 = 0.3 m.

V = V1 + V2 = (8.987 × 109 N · m2/C2)
(
1.67 × 10−9 C

)( −3

0.3 m
+

1

0.3 m

)
=

(
15.00 N · m2/C

)( −2

0.3 m

)
= −100.0 V

C. At the field point y = 0, x = 0

Here, r1 = 0.1 m, and r2 = 0.1 m.

V = V1 + V2 = (8.987 × 109 N · m2/C2)
(
1.67 × 10−9 C

)( −1

0.1 m
+

1

0.1 m

)
= 0

9. 330-nF capacitor charged to 50 volts

A. Charge on the plates

Q = CV = (330 × 10−9 C/V)(50 V) = 16.5µC

B. Energy
U = 1/2QV = 1/2CV 2 = 1/2 (330 × 10−9 C/V)(50 V)2 = 412.5µJ
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10. Combining a 330-nF capacitor with a 110-nF capacitor

In parallel, the equivalent capacitance is the sum of the individual capacitances. In series, the reciprocal of
the equivalent capacitance is the sum of the reciprocals of the individual capacitances. These questions ask
about the charge Q = CV on the 330-nF capacitor, so we need to understand how charge and voltage works
in these configurations.

A. Charge on the 330-nF capacitor when in parallel

When in parallel, the two capacitors are each subjected to the same source voltage, which here is
50.0 volts. Thus the charge on the 330-nF capacitor is (330 × 10−9 C/V)(50.0 V) = 16.5µC.

B. Charge on the 330-nF capacitor when in series

The key to unlocking this question is to realize that the same charge is separated by both capacitors
and by the equivalent capacitor. When charge Q is placed on the positive side of capacitor 1, −Q is
placed (or +Q is removed) from the negative side of capacitor 2. To answer this question, then, we
need to find the charge on the equivalent capacitor. Since Q = CV , we need to find the equivalent
capacitance C and then multiply is by V = 50.0 volts.

1

C
=

1

C1
+

1

C2
=

1

330 nF
+

1

110 nF

=
1

330 nF
+

3

330 nF
=

4

330 nF

C =
330 nF

4
= 82.5 nF.

Q = CV = (82.5 nF)(50.0 V) = 4.125µC

11. Comparing and adjusting parallel plate capacitors

Both capacitors have the same charge Q, but Capacitor 1 has plate area A and Capacitor 2 has plate area
2A. We’ll need to keep in mind the formula for capacitance of a parallel plate capacitor, C = κAε0/d, as
well as the capacitor formulas C = Q/V and U = 1/2QV .

A. Same plate spacing d: Find V2 in terms of V1

With the same plate spacing, Capacitor 2 will have twice the capacitance of Capacitor 1: C2 = 2C1.
Voltages will be V = Q/C, so V1 = Q/C1 and V2 = Q/C2 = Q/(2C1) = 1/2 (Q/C1) = 1/2V1.

B. Spacing d2 to make C2 = C1

C1 = C2

κA1ε0/d1 = κA2ε0/d2

A1/d1 = A2/d2

A/d1 = 2A/d2

d2 = 2 d1

C. Dielectric κ to make C1 = C2

C1 = C2

κAε0/d = 2Aε0/d

κ = 2
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12. Breakdown of a mica dielectric

The breakdown voltage VB is determined by the dielectric strength ED and the thickness d of the dielectric
layer. The dielectric strength tells the highest electric field strength that the dielectric can withstand. In a
parallel plate capacitor, the electric field E is uniform, so the voltage V , the work per charge necessary to
push a test charge from the negative plate to the positive plate, is V = ED d. Thus, the breakdown voltage
of the dielectric layer will be VB = ED d.

A. Dielectric thickness d giving breakdown voltage VB = 600 V

VB = ED d

d = VB/ED = (600 V)/(110 × 106 V/m) = 5.455 × 10−6 m

B. Plate area A giving capacitance C = 5.00µF

C =
κAε0
d

A =
Cd

κε0
=

(5.00 × 10−6 F)(5.455 × 10−6 m)

(4.0)(8.854 × 10−12 F/m)
= 0.770 m2

C. Electric field E inside the dielectric when V = 300 V

The field inside the dielectric is 1/κ what it would be if the dielectric were a vacuum. Here, that
would be V/d, so

E =
V

κd
=

300 V

4 · 5.455 × 10−6 m
= 1.37 × 107 V/m = 13.7 kV/mm
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