Name:	
-------	--

PHYS 1220-02 Quiz 1

You may use an $8.5"\times11"$ note sheet written on both sides and a calculator. You have 50 minutes.

Please write your answers in the boxes provided. Show your work outside the boxes.

1.	Xylenes are high-boiling hydrocarbon solvents. They are normally sold as a mixture of o -xylene, m -xylene, and p -xylene. O -Xylene's boiling temperature is 144°C, m -xylene's boiling temperature is 139°C, and p -xylene's boiling temperature is 138°C.			
	a. (1 pt) What is <i>o</i> -xylene's boiling temperature in kelvin?			
	b. (1 pt) What is the difference between the boiling temperatures of <i>o</i> -xylene and <i>p</i> -xylene in kelvin?			
2.	The viaduct (highway bridge) on Third Street just south of Laramie over the train tracks is 170.0 meters long in the summertime at a temperature of 25°C. The viaduct is made of steel, which has a thermal coefficient of length expansion of $\alpha = 11 \times 10^{-6}$ /°C.			
	a. (1 pt) In the winter, when the span is at a temperature of -20°C, is it shorter or longer than it is in the summer? (Select the best answer by filling the circle).			
	○ Shorter ○ Longer			
	b. (2 pt) In the winter, at a temperature of –20°C, how much (length) shorter or longer is the span compared to its length at 25°C?			
3.	(1 pt) The engineering plastic PEEK has a thermal coefficient of length expansion of $\alpha = 55 \times 10^{-6}$ °C. What is its coefficient of volume expansion?			

4.	transported in a glass bo bottle with an interior vo truck, reaching a temper	ottle, $\beta = 27 \times 10^{-6}$ /°C. 4 colume of 4.10 liters at 20 rature of 45°C. What vol	ame expansion of $\beta = 10 \times 10^{-7}$ C, is .00 liters of xylenes are packed in a glass of the bottle of xylenes is shipped in a hot lume of the bottle is not occupied by xylenes apacity of the bottle at 45°C, give a negative		
_					
5.	(1 pt) "Heat rises" applifilling their squares.	es to which heat transfer	mechanism? Select all correct answers by		
	☐ Conduction	☐ Convection	☐ Radiation		
6.	(1 pt) Which heat transf	er mechanism operates in	n a vacuum? Select all correct answers by		
	☐ Conduction	☐ Convection	☐ Radiation		
7.	Very roughly, the Antarctic ice sheet has a mass of 2.6×10^{19} kilograms and a temperature -15° C. The latent heat of melting ice is 334 kJ/kg, and the specific heat capacity of ice is $2.10 \text{ kJ/(kg} \cdot ^{\circ}\text{C})$. The energy input that Earth receives from the Sun is around 1.66×10^{17} watts.				
	a. (1 pt) What heat inp	ut would raise the tempe	rature of the Antarctic ice sheet to 0°C?		
	h (1 nt) What further h	neat innut would melt all	the ice in the Antarctic ice sheet?		
	o. (1 pt) what further f	leat input would meit an	the fee in the Antaiette fee sheet:		

8.	(1 pt) An aluminum pot sits on a hot stove burner. The bottom of the pot is 0.500 cm thick, and is circular with an area of 0.0154 m ² . The burner is maintained at a temperature of 98.0°C, and the pot contains water boiling at 95.0°C. The thermal conductivity of aluminum is 250 W/(m·K). What is the heat current (rate of heat transfer) through the bottom of the			
	pot?			
9.	(1 pt) A bag of potato chips is packed and sealed containing 1.50 liters of air at sea level pressure of 1.01×10^5 Pa and temperature of 27°C. It is shipped to Laramie, where the temperature is 21°C and the pressure is 7.5×10^4 Pa. At this temperature and pressure, what is the volume of the air in the bag?			
10	and temperature of 20.0° C is taken outdoors in winter, so that the air in the jug cools to -20.0° C. What is the pressure of the air in the jug at this temperature? You may neglect any change in the volume of the jug.			