PHYS 1220-02 Group Work Sheet Heat engines

1. A Carnot engine operates at the thermodynamic limit of efficiency for a heat engine. But no real machine anywhere is powered by a Carnot engine. For some reason, a Carnot engine isn't practical.

The four steps of a Carnot cycle are 1. Isothermal expansion at T_h 2. Adiabatic expansion from T_H to T_c 3. Isothermal compression at T_C 4. Adiabatic compression from T_c to T_h . Which step or steps cannot be run optimally efficiently in practice, and why?

- 2. One of your Mastering Physics homework questions for this week claims "The heat coming out the hot side of a heat pump Q_h or the heat going in to the cold side Q_c of a refrigerator is more than the work put in." Is this strictly true?
 - a. Under what circumstances is $Q_h > W$ for a heat pump operating at thermodynamic maximum performance?

b. Under what circumstances is $Q_c > W$ for a refrigerator operating at thermodynamic maximum performance?