LC Oscillator

A capacitor of capacitance C and an inductor of inductance L form a circuit that oscillates so that the capacitor charge Q is described by the function $Q = Q_0 \cos(\omega t)$.

- 1. What is the frequency f of oscillation in terms of the parameter ω ?
- 2. The parameter ω describes how rapidly the capacitor charge cycles.
 - a. What quantities control the value of ω ?
 - b. What sort of quantity is ω ? Is it a vector or scalar? Is it an integer, real, or complex? What are its units?
 - c. What is the formula for ω in terms of the characteristics of the circuit?
- 3. The voltage V across a capacitor depends on its charge Q by V = Q/C. What is the formula for the capacitor voltage as a function of time in an LC circuit?
- 4. The current into and out of a capacitor is the rate of charge accumulation on its plates, dQ/dt. What is the formula for the current as a function of time in an LC circuit?
- 5. The voltage across an inductor determines, or is determined by (it's hard to assign cause and effect in an inductor), the rate of change of current, $V = L \, dI/dt$. What is the formula for inductor voltage as a function of time in an LC circuit?
- 6. The energy stored in the electric field of a capacitor is $U_C = \frac{1}{2} QV$. What is the formula for the energy stored in the capacitor as a function of time?
- 7. The energy stored in the magnetic field of an inductor is $U_L = \frac{1}{2} LI^2$. What is the formula for energy stored in the inductor as a function of time?
- 8. What is the formula for the total energy in an LC circuit as a function of time?

- 9. In a simple harmonic oscillator, in which a mass m is acted on by the force F = -kx of a Hooke's law spring with stiffness k, what are the expressions for:
 - a. ω^2 ?
 - b. *x*?
 - c. v = dx/dt?
 - d. a = dv/dt?
 - e. $U = \frac{1}{2} kx^2$?
 - f. $K = \frac{1}{2} mv^2$?
 - g. E = K + U?